References
Asahi, T., Hasebe, K. \& Gesi, K. (1988). J. Phys. Soc. Jpn, 57, 4219-4224.
Gest, K. (1982). J. Phys. Soc. Jpn, 51, 203-207.
Gesi, K. \& Ozawa, K. (1983). J. Phys. Soc. Jpn, 52, 2440-2442.
Hasebe, K., Asahi, T. \& Gesi, K. (1990). J. Phys. Soc. Jpn, 46, 218-220.
Mashiyama, H. \& Koshin, N. (1989). Acta Cryst. B45, 467-473.

Perret, R., Godefroy, G. \& Arend, H. (1987). Ferroelectrics, 73, 87-99.
Pressprich, M. R., Bond, M. R. \& Willett, R. D. (1991). Phys. Rev. $B, 43$. In the press.
Sheldrick, G. M. (1986). SHELXTL Users Manual. Version 5.1. Nicolet Analytical Instrument Corporation, Madison, Wisconsin, USA.
Trouélan, P., Lefebvre, J. \& Derollez, P. (1985). Acta Cryst. C41, 846-850.

Structural Investigation of $\mathbf{N i}^{\text {II }}$ Complexes. VIII. Structure of Tris(2,4-dimethylpyridine)bis(isothiocyanato)nickel(II)

By E. Ďurčanská, M. Koman and M. Jamnický
Department of Inorganic Chemistry, Slovak Technical University, CS-812 37 Bratislava, Czechoslavakia

(Received 7 August 1989; accepted 19 December 1990)

Abstract

Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{3}\right], M_{r}=496 \cdot 34\), tetragonal, $P 44_{1} 2, a=13 \cdot 44$ (1), $c=14 \cdot 191$ (5) $\AA, Z=4$, $V=2563$ (3) $\AA^{3}, \quad D_{m}=1 \cdot 285$ (6), $D_{x}=1.29 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.7107 \AA, \mu=9.3 \mathrm{~cm}^{-1}, F(000)=1040$, room temperature, $R=0.049, w R=0.056$ for 1030 reflections with $I \geq 1 \cdot 96 \sigma(I)$. Five N atoms surround the Ni atom, defining a coordination polyhedron intermediate between trigonal bipyramidal and tetragonal pyramidal. The complex lies on a crystallographic diad axis which passes through the Ni atom and one of the dimethylpyridine ligands which is disordered.

Introduction. Structural studies of $\mathrm{Ni}(\mathrm{NCS})_{2}$ (alkylpyridine) ${ }_{x}$ complexes have shown that there is a direct relationship between the size and position of the pyridine alkyl substituents and the structure of the complex. 4 - and 3 -alkyl-substituted pyridines form pairs of the pseudo-octahedral complexes of different symmetry [Andreetti, Bocelli \& Sgarabotto, 1972; Kerr \& Williams, 1977 (4-methylpyridine complexes); Ďurčanská, Jamnický, Koman, Wnęk \& Głowiak, 1986 (3-ethylpyridine complexes)] depending on the preparation mode whereas 2 -alkylsubstituted pyridines cause a radical change in the coordination number of the $\mathrm{Ni}^{\text {II }}$ atom, decreasing it from 6 (the usual value) to 4 or 5 . The structure determination of $\left[\mathrm{Ni}(\mathrm{NCS})_{2}(2,5 \text {-dimethylpyridine })_{2}\right]$ (Ďurčanská, Głowiak \& Kožišek, 1982) provides an example of square planar nickel(II) with 2 methylpyridine ligands; the corresponding pentacoordinate nickel(II) species $\left[\mathrm{Ni}(\mathrm{NCS})_{2}(2,5\right.$-dimethylpyridine $)_{3}$] was too unstable for X-ray anal-

0108-2701/91/061191-03\$03.00
ysis. Instead we report the structure determination of the title complex. Spectral and magnetic measurements confirmed the pentacoordination of Ni^{11} (Jóna, Jamnický \& Šramko, 1978), X-ray analysis now gives a more precise picture of the coordination geometry and of its relationship with the steric properties of the 2 -substituted pyridine ligands.

Experimental. Green bipyramids, $0.35 \times 0.35 \times$ 0.30 mm ; density measured by flotation $\left(\mathrm{CCl}_{4} /\right.$ acetone). Cell parameters refined on Syntex $P 2_{1}$ diffractometer by least squares from 15 reflections with $4 \leq \theta \leq 17^{\circ}$. Absorption and extinction ignored. Intensity measurements from $\theta-2 \theta$ scans carried out for $0 \leq 2 \theta \leq 55^{\circ}$. $h k l$ range $h-17$ to $17, k 0$ to $17, l 0$ to 18 . Two standard reflections every 50 measurements, decreased in intensity by 15% during the course of the experiment, 1030 independent reflections with $I \geq 1 \cdot 96 \sigma(I)$ (725 unobserved reflections), $R_{\text {int }}=0.032$ assuming $4 / \mathrm{mmm}$ Laue symmetry. Ni atom position from Patterson function; other non-H atoms from Fourier syntheses. The nine H atoms [of the $\mathrm{N}(2)$ pyridine ligand] were initially located from a difference map and then refined isotropically; the seven independent H atoms of the disordered $\mathrm{N}(1)$ ring were positioned geometrically, full-matrix refinement [except H atoms of $\mathrm{N}(1)$ ring] based on F, 173 parameters refined, $R=0.049, w R=0.056, w=$ $1 /\left[\sigma^{2}(F)+0.0134(F)^{2}\right],(\Delta / \sigma)_{\max }$ in final least-squares cycle 0.6 [for $\mathrm{C}(27)$]; $\Delta \rho$ values between 0.27 and $-0.32 \mathrm{e} \AA^{-3}$. No attempt was made to determine chirality by refinement in the alternative space group $P 4_{3} 2_{1}$. XTL program system (Syntex, 1973) and
© 1991 International Union of Crystallography

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$U_{\text {eq }}$
Ni^{*}	0.7749 (2)	0.7749	0	0.053 (1)
N	0.7489 (6)	0.7509 (7)	$0 \cdot 1365$ (6)	0.079 (5)
C	0.7309 (8)	0.7360 (8)	0.2134 (6)	0.070 (5)
S	0.7064 (3)	0.7258 (3)	$0 \cdot 3248$ (2)	$0 \cdot 107$ (2)
$\mathrm{N}(2)$	0.8780 (5)	0.6518 (5)	-0.0034 (6)	0.061 (4)
C(21)	0.8473 (7)	0.5577 (6)	-0.0027 (8)	0.062 (5)
C(22)	0.9119 (9)	0.4775 (7)	-0.0041 (7)	0.070 (5)
C(23)	1.0131 (8)	0.4920 (6)	-0.0074 (8)	0.064 (5)
C(24)	1.0443 (8)	0.5898 (8)	-0.0089 (8)	0.073 (6)
C(25)	0.9760 (7)	0.6646 (7)	-0.0078 (8)	0.064 (6)
C(26)	0.7341 (9)	0.5401 (8)	0.0014 (14)	0.092 (8)
C(27)	1.0856 (12)	0.4086 (10)	-0.0039 (12)	0.095 (8)
$\mathrm{N}(1)^{*}$	$0 \cdot 8846$ (6)	0.8846	0	$0 \cdot 100$ (8)
C(11)	0.9404 (9)	0.9005 (8)	0.0764 (12)	0.098 (8)
C(12)	1.0181 (11)	0.9727 (12)	0.0766 (15)	$0 \cdot 153$ (15)
C(13)*	1.0300 (8)	1.0300	0	$0 \cdot 172$ (15)
C(14)*	1-1100 (9)	1.1100	0	0.309 (23)
$\mathrm{C}(15) \dagger$	0.9527 (22)	0.8470 (18)	$0 \cdot 1643$ (21)	$0 \cdot 198$ (21)

* On diad axis $x, x, 0$.
\dagger Site-occupation factor is 0.5 .

Table 2. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

	-		
$\mathrm{Ni}-\mathrm{N}$	$1.995(9)$	$\mathrm{N}-\mathrm{C}$	$1.136(12)$
$\mathrm{Ni}-\mathrm{N}(1)$	$2.985(3)$	$\mathrm{C}-\mathrm{S}$	$1.621(9)$
$\mathrm{Ni}-\mathrm{N}(2)$	$2.159(7)$		
$\mathrm{N}-\mathrm{Ni}-\mathrm{N}(1)$	$103.8(3)$	$\mathrm{Ni}-\mathrm{N}-\mathrm{C}$	$177.6(9)$
$\mathrm{N}-\mathrm{Ni}-\mathrm{N}(2)$	$90.6(3)$	$\mathrm{N}-\mathrm{C}-\mathrm{S}$	$175.0(1)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(2)$	$95.1(2)$	$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}\left(2^{\prime}\right)$	$169.9(3)$
$-\mathrm{N}-\mathrm{Ni}-\mathrm{N}^{\prime}$	$152.4(4)$	$\mathrm{N}-\mathrm{Ni}-\mathrm{N}\left(2^{\prime}\right)$	$87.0(3)$

A prime indicates the transformation $y, x,-z$.

SHELX76 (Sheldrick, 1976), PARST (Nardelli, 1983), scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV).

Discussion. Positional and equivalent isotropic thermal parameters are given in Table 1,* main interatomic distances and bond angles in Table 2. The crystal structure consists of mononuclear complex molecules having C_{2} symmetry [the $\mathrm{Ni}-\mathrm{N}(1)$ lies on the twofold axis]. The molecular drawing with the atom-numbering scheme is given in Fig. 1 and the crystal packing is shown in Fig. 2. The coordination geometry was first studied by spectral and magnetic measurements. The magnetic moment, 3.29 BM $\left(1 \mathrm{BM} \equiv 9.27 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}\right)$, and the electronic absorption spectra with five absorption maxima at $\tilde{\nu}$ $=6700,10400,14800,24500$ and $28150 \mathrm{~cm}^{-1}$ (Jóna, Jamnicky \& Šramko, 1978) show that the $\mathrm{Ni}^{\mathrm{II}}$ atom

[^0]is five coordinate. However, the symmetry and the geometry of the coordination polyhedron could only be determined by the X-ray analysis.

The coordination polyhedron around the $\mathrm{Ni}^{I I}$ atom can be described as tetragonal pyramidal [having two N and two $\mathrm{N}(2)$ atoms in basal positions and $\mathrm{N}(1)$ in the apical position] strongly distorted towards trigonal bipyramidal [with $\mathrm{N}(1)$ and two $\mathrm{N}(\mathrm{NCS})$ atoms forming the equatorial plane, the apical positions being occupied by $\mathrm{N}(2)$ atoms]. The degree of distortion can by seen from comparison of the bond angles for regular tetragonal pyramidal and the trigonal bipyramidal coordination (Addison, Nageswara Rao, Reedijk, van Rijn \& Verschoor, 1984) with those found for the title complex (Table 2).

Fig. 1. The molecular drawing with atom numbering.

Fig. 2. Projection of the structure along \mathbf{c}.

The arrangement of donor atoms around the central atom is influenced by the steric properties of the 2,4-dimethylpyridine ligand: the 2-methyl substituents, i.e. the pairs of diad-related $\mathrm{C}(26)$ and $\mathrm{C}(15)$ methyl groups, block further coordination of the Ni atom; the intramolecular distances $\mathrm{Ni} \cdots \mathrm{C}(26)$ and $\mathrm{Ni} \cdots \mathrm{C}(15)$ are $3 \cdot 20$ (1) and 3.48 (3) \AA, respectively. Two C(26) methyl groups lie approximately in the position trans to $\mathrm{N}(1)$, while the two disordered $\mathrm{C}(15)$ methyl groups occupy the space between the $\mathrm{N}(1)$ atom and the N atoms of the NCS groups.

The $\mathrm{N}(1)$ pyridine atoms $\mathrm{N}(1), \mathrm{C}(13)$ and $\mathrm{C}(14)$ lie on a crystallographic twofold axis, with consequent disordering of both methyl substituents. The high $U_{\text {eq }}$ values for some of the C atoms of this ring (Table 1) may also reflect the disorder.

The $\mathrm{N}(2)$ pyridine ring is planar, the $\mathrm{N}(1)$ pyridine atoms deviate significantly from planarity $[C(11)$ and $\mathrm{C}(12)$ atoms by 0.02 (1) and 0.03 (2) \AA, respectively]; their average planes form a dihedral angle of $71 \cdot 1$ (6) ${ }^{\circ}$.

The shortest contacts were found between the S and H atoms [H atoms bonded to the $\mathrm{C}(24)$ and
$\mathrm{C}(12)$ atoms] of the adjacent complex molecules; further contacts were found between 2,4-dimethylpyridine ligands of adjacent molecules. Intermolecular contacts correspond to the sum of the van der Waals radii of the atoms involved.

References

Addison, A. W., Nageswara Rao, T., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. p. 1349.

Andreetti, G. D., Bocelli, G. \& Sgarabotto, P. (1972). Cryst. Struct. Commun. 1, 51-54.
ĎurČanská, E., GŁowiak, T. \& Kožíšek, J. (1982). Chem. Zvesti, 36, 651-660.
ĎurĆanská, E., Jamnický, M., Koman, M., Wnȩk, I. \& GŁowiak, T. (1986). Acta Cryst. C42, 1157-1159.
Jóna, E., Jamnický, M. \& Šramko, T. (1978). Z. Anorg. Allg. Chem. 447, 207-214.
Kerr, I. S. \& Williams, D. (1977). Acta Cryst. B33, 3589-3592.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Syntex (1973). XTL Structure Determination System. Syntex Analytical Instruments, Cupertino, California, USA.

Acta Cryst. (1991). C47, 1193-1196

Synthesis and Structure of Bis(tetraphenylphosphonium) Bis(tetratellurido)palladate Dimethylformamide Solvate

By Mercouri G. Kanatzidis
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

(Received 26 July 1990; accepted 7 December 1990)

Abstract

P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Pd}\left(\mathrm{Te}_{4}\right)_{2}\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\) (I), $M_{r}=$ 1806, orthorhombic, Pbca, $a=29.611$ (10), $b=$ $16 \cdot 291$ (6), $c=23 \cdot 325$ (9) $\AA, V=11251 \cdot 8 \AA^{3}, Z=8$, $D_{x}=2 \cdot 17, D_{m}=2 \cdot 20$ (1) $\mathrm{g} \mathrm{cm}^{-3}$ (by flotation in CHBr_{3} /heptane), \quad Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $44.9 \mathrm{~cm}^{-1}, \quad F(000)=6680, \quad T=296 \mathrm{~K}$, final $R=$ $0.044, w R=0.049$ for 4453 reflections with $F_{o}{ }^{2}>$ $3 \sigma\left(F_{o}^{2}\right)$. The structure is composed of $\mathrm{Ph}_{4} \mathrm{P}^{+}$ cations, $\left[\mathrm{Pd}\left(\mathrm{Te}_{4}\right)_{2}\right]^{2-}$ anions and DMF molecules. The $\left[\operatorname{Pd}\left(\mathrm{Te}_{4}\right)_{2}\right]^{2-}$ complex features a nearly squareplanar Pd^{2+} atom chelated by two Te_{4}^{2-} ligands. The PdTe_{4} five-membered rings are puckered forming an envelope conformation. The mean $\mathrm{Pd}-\mathrm{Te}$ bond distance is 2.587 (2) \AA. The mean $\mathrm{Te}-\mathrm{Te}$ bond distance is 2.74 (3) \AA.

Introduction. Transition-metal polytelluride chemistry is relatively little explored. Recently reports of some remarkable species $\left[\mathrm{Hg}_{4} \mathrm{Te}_{12}\right]^{4-}$ and $\left[\mathrm{Hg}_{2} \mathrm{Te}_{5}\right]^{2-}$ (Haushalter, 1985a), $\left[\mathrm{NbTe}_{10}\right]^{3-}$ (Flomer \& Kolis,
1988), $\left[\mathrm{Mo}_{4} \mathrm{Te}_{16}(\mathrm{en})_{4}\right]^{2-}$ (Eichhorn, Haushalter, Cotton \& Wilson, 1988), $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{Te}_{3}\right]^{2-}$ (Eichhorn \& Haushalter, 1990), $\left[\mathrm{Cr}(\mathrm{CO})_{2}\left(\mathrm{Te}_{2}\right)_{2}\right]^{2-}$ (Flomer, O'Neal, Kolis, Jeter \& Cordes, 1988), $\left[\mathrm{Au}_{2} \mathrm{Te}_{2}\right]^{2-}$ (Haushalter, 1985b), and $\left[\mathrm{KAu}_{9} \mathrm{Te}_{7}\right]^{4-}$ and $\left[\mathrm{K}_{2} \mathrm{Au}_{4}{ }^{-}\right.$ $\left.\mathrm{Te}_{4}(\text { solv })_{4}\right]^{2-}$ (Haushalter, 1985c) indicate that polytelluride chemistry will produce new compounds, not quite analogous to S or even Se . As part of our synthetic efforts in this area we synthesized and structurally characterized $\left[\operatorname{Pd}\left(\mathrm{Te}_{4}\right)_{2}\right]^{2-}$ as the $\mathrm{Ph}_{4} \mathrm{P}^{+}$salt. While our work was in progress (Kanatzidis, 1988), the structure of $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Pd}\left(\mathrm{Te}_{4}\right)_{2}\right]$ was reported (Adams, Wolfe, Eichhorn \& Haushalter, 1989). Interestingly, although the molecular structure of Haushalter's $\left[\operatorname{Pd}\left(\mathrm{Te}_{4}\right)_{2}\right]^{-2}$ is essentially the same as ours, the space groups in the two varieties are different. Our complex (I) is a dimethylformamide (DMF) solvate and has an orthorhombic crystal system, whereas Haushalter's compound (II) is unsolvated and is triclinic. Since (I) is different, we wish to

[^0]: * Lists of structure factors, anisotropic thermal parameters, bond lengths and angles including those for H atoms and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53857 (12 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

